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This article gives suboptimal, easily computable substitutes for the discrete prolate-
spheroidal windows used by Thomson for spectral estimation. Trigonometric coefficients
and energy leakages of the window polynomials are rabulated.

. Motivation

In a paper [1] on precise time and time interval (PTTI)
applications, D. Percival argued as follows for the increased
use of frequency domain methods for studying PTTI data:

In contrast to common practise in many other physical
sciences, the statistical analysis of PTTI data is often
based directly on time domain techniques rather than on
frequency domain (spectral analysis) techniques. The
predominant analysis technique in the PTTI community,
namely. the two-sample (or Allan) variance, is often used
to indirectly infer frequency domain properties under
the assumption of a power-law spectrum. Here we argue
that direct use and estimation of the spectrum of PTTI
data have a number of potential advantages. First, spec-
tral estimators are typically scaled independent chi-
square random variables with a known number of degrees
of freedom. These properties allow easy computation
of the variance of estimators of various quantities
that are direct functions of the spectrum. Second, the
effect of detrending data can be quantified more easily
in the frequency domain than in the time domain.
Third, the variance of estimators of the two-sample
variance can be expressed in terms of readily estimated
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spectral density functions. This allows one to generate
confidence intervals for the two-sample variance with-
out explicitly assuming a statistical model. Fourth, there
exist tractable statistical techniques for estimating the
spectrum from data sampled on an unequally spaced
grid or from data corrupted by a small proportion of
additive outliers. The two-sample variance cannot be
readily generalized to these situations.

In the course of testing frequency standards and distribu-
tion equipment for the Deep Space Network, the JPL Fre-
quency Standards Laboratory generates computer files con-
taining records of phase residuals of pairs of frequency sources.
The statistical properties of these time series are routinely
summarized by estimating the two-sample variance [2]. This
article is a step toward the goal of supplementing this current
ability with the ability to generate estimates of power spectral
density of phase for Fourier frequencies f below the Nyquist
frequency of these records, typically 0.5 Hz. These estimates,
together with measurements of spectral density for higher f
provided by commercial real-time spectrum analyzers, could
characterize the phase noise of frequency sources over many
decades of f extending from microhertz to kilohertz. Periodic
disturbances, which are now detected haphazardly by visual



inspection of the residuals or by noticing steps or oscillations
in the plots of two-sample variance, could be detected unam-
bigously by statistical procedures based on spectral estimators
or periodograms.

In [1] quoted above, Percival recommends a new method
of spectral estimation, due to Thomson [3], that is especially
suited to situations in which the range of spectral densities
to be estimated is large. The method uses multiple orthogonal
data windows (also called weights or tapers), the approximate
computation of which is the main subject here.

Il. The Thomson Spectral Estimation
Method

In the Thomson method for estimating the power spectrum
of a stationary time series x [#] given N samples x[0], ...,
x [N -1], a frequency band [f; =W, f, + W] is chosen, and
an estimate for the spectral density value S(f;) is computed as
an average of the windowed periodograms. namely,
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The window sequences v, , ..., v, _, are the discrete prolate-
spheroidal sequences (DPSS) of Slepian [4]. They are ortho-
normal and are leakage-optimal over the space of sequences
index-limited to 0, ..., N - 1,in the sense that

(1) v, has the smallest leakage of all nonzero elements

(2) for k > 0, v, has the smallest leakage of all nonzero
elements orthogonal to Voo Vi

For a given bandwidth W, the leakage I.(g, W) of a function
g of discrete or continuous time is defined here as the fraction
of its total energy contained in frequencies outside [-W, W].
The leakage L (v, , W) increases with k and decreases with W.
By virtue of the orthogonality of the v, the estimate of
Eq. (1) has approximately 2K degrees of freedom if x is
Gaussian, S(f) is nearly constant for |f-f,| < W, and the
leakage of v, _, is small. Thus, by adjusting W and K, one can
achieve a tradeoff in Eq. (1) among variance, resolution, and
the influence of frequencies outside [f, - W, f, + W] (the
usual meaning of “leakage™).

Since the computation of the DPSS requires the solution of
the eigensystem of an V X N matrix (or of an integral operator
if NV is large), the design of easily computable suboptimal sub-
stitutes for them may be of value. In view of Nuttall’s con-
structions of windows from cosine polynomials of low degree
[5], one might expect trigonometric polynomials with both
sines and cosines to make attractive materials for construction
of DPSS substitutes. In fact, this idea has already been realized
by Bronez ([6], p- 1869) in his recent extension of the Thom-
son method to the more general situation of unevenly spaced
and multidimensional data. The coefficients of his polynomials
and their leakages are respectively the eigenvectors and eigen-
values of a certain matrix whose coefficients depend on N,
the number of data. The aim of this article is to simplify the
situation further for evenly spaced one-dimensional data by
deriving the coefficients and leakages of an orthonormal set
of continuous-time trigonometric polynomials that do not
depend on N. They are converted to discrete-time data win-
dows by sampling them at N properly chosen points.

Ill. Continuous-Time Windows

In this article, w is used to denote bandwidth in terms of
the fundamental frequency unit, which is 1/V for windows on
0,...,N-1, and 1 for windows on [-1/2,1/2], as con-
structed below. It is assumed that w is an integer (for the
author’s convenience only). Consider a time-limited trigono-
metric polynomial

M
d(x) = Z clv] e?m™x lx1<1/2
v=—M
=0 x> 1/2
of degree <M. Its Fourier transform is
M
o) = D clvl s -v) (3)
v=-M
where
_sinmy
) = 2 (4)

The polynomials sought can be defined immediately: their
coefficient arrays are normalized eigenvectors of the positive-
definite matrix

Ali,f] =f sy -1)s(y -j)dy, i,j = -MtoM

yl>w
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and their leakages are the eigenvalues. Denote the resulting
polynomials by ¢, (x;w, M), kK = 0 to 2M. and their coeffi-
cients by ¢, [v], v = =M to M, where the leakages L (¢, , w) are
taken in increasing order. The polynomials are orthonormal
and leakage-optimal over the space of polynomials of degree
< M. They are called trig prolatres for short, because they can
be regarded as finite-dimensional analogs of the prolate-
spheroidal wave functions (PSWF) [7]. The symmetry of 4
about its reverse diagonal forces the eigenfunctions to be
either even or odd (the odd ones are multiplied by *i to make
them real), and empirically the above indexing gives ¢, the
parity of k. The trig prolates share with the PSWF the prop-
erty of double orthogonality: their transforms &, (y:w, M)
are orthogonal over [-w, w] as well as over (e, o).

The entries of 4 were computed as linear combinations of
the integrals

1 . 2 1 L2
f %:—y- dy,f il dy. n=0tow+M-1
o |TUY) o | T0rty)

which were computed by Romberg quadrature. The eigen-
values and eigenvectors were computed by EISPACK routines
[8].[9]. Although the leakages decrease if M increases, setting
M = w gives adequate performance (Section V).

Table 1 gives the coefficients and leakages of the trig pro-
lates for w = 2 to 5, M = w, and for all k such that L (¢, , w) <
0.01. Figure 1 shows the frequency response (&b, (y;4,4)|2
for k = 0 and 4. Comparing these with Thomson’s graphs of
the frequency responses of the DPSS for large N ([3], Fig. 2),
one can see that the maximum sidelobes of the trig prolates
are at most 2.5 dB above those of the corresponding DPSS.
although the sidelobe structure of the trig prolates is less
regular.

IV. Discrete-Time Windows

An orthogonal set of windows for data on 0...., N-1
and bandwidth W = w/N is constructed by sampling the ¢, as
follows:

-(N-1)/2
u [N, W,M] = M%,W,M).

(5)
n=0toN-1,k=0to2M

Notice that the denominator is N instead of N -~ 1. This has
two beneficial effects:

(1) the basis functions e?27* remain orthogonal when so
sampled

302

(2) their discrete-time transforms are more closely related
to their continuous-time transforms (see below)

The discrete-time windows wu, are called sampled trig pro-
lares. Orthogonality is preserved, namely,

N-1

Z u,[n] Y [n] = N&

n=0

ij
Their discrete-time Fourier transforms are

M
U SN, WM) = eV =00 3o (o] s(Nf - v N)

v=—Af
where

A = sin Ty
sG3N) sin(my [N)

(compare with Egs. (3) and (4)). A spectral estimate of Thom-
son type is obtained by using (1/+/ V) u, [n; N, W, M] in place
of v [1; N, W] in Egs. (1) and (2).

V. Comparison with Optimal Windows

How much leakage performance is lost by the use of these
suboptimal windows? Let L(¢,,w). L(u,, N, W), and 1 -
A (N, W), where NW = w = M, be the leakages of the trig
prolates, the sampled trig prolates, and the optimal DPSS
respectively. Evaluating L (x,) by means of the quadratic
form in the numerator of Eq. (32) of [6], it is found that
L(u,.) is between 0dB and 1.2dB less than L(¢,) for the
instances of w and k given in Table 1 and for N=8w.For N =
16w, replace 1.2 dB by 0.6 dB. Thus, the sampled trig prolates
have slightly less leakage than the trig prolates. Table 2 gives
the ratio of sampled trig prolate leakage to DPSS leakage,
which was computed by solving the eigensystem given by
Eq. (2.9) of [3]. For N = 8w, the leakages of the trig pro-
lates are 1.2 dB to 5.4 dB greater than those of the optimal
DPSS; for N = 16w, the range is 1.2 dB to 2.6 dB. The leakages
of the corresponding Bronez discrete polynomial windows,
which form the leakage-optimal set of discrete-time poly-
nomials of degree <M, necessarily lie between those of the
sampled trig prolates and those of the DPSS.

VI. Conclusions

This article has described several orthonormal systems of
data windows, called the sampled trig prolates, that can be
used in the Thomson method of spectral estimation. For w =



NW =2 to 5, and 4W not greater than the Nyquist frequency
(ie., N = 16w), the user of these windows pays a leakage
penalty of at most 2.6 dB for not using the optimal DPSS
windows. In return, one merely needs to evaluate certain
trigonometric polynomials of degree w, with coefficients
given in Table 1, at N points according to Eq. (5). By con-
trast, the evaluation of the DPSS windows requires the solu-
tion of an N X N symmetric Toeplitz matrix eigensystem. If

N is large, one can proceed by solving a symmetricJ X J eigen-
system obtained from the approximation of a certain integral
operator by Gaussian quadrature, in which the required
number of knots J depends on the details of floating-point
hardware and mathematical software ({3], pp. 1090-1091).
The prospective user of the Thomson method might regard the
2.6-dB penalty as an attractive tradeoff for avoiding these
complexities.
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Table 1. Sine-cosine coefficients a,[~]and leakage L(¢y,w) for trig prolate ¢y (x;w,w) = a,[0] + 2 Z ax[v] cos 2nwx (k even)

M v=1
or2 )~ ay[v] sin 2mvx (k odd)
»=1
w=M=2 w=M=3
k 0 1 k 0 1 2 3
L 0.8901E-04 0.3254E-02 L 0.2113E-06 0.1520E-04 0.4394E-03 0.6810E-02
v ak[u] v a;fv]
0 0.8202108 0.0 0 0.7499700 0.0 0.4969513 0.0
1 0.4041691 0.7007932 1 0.4596063 0.6507499 —-0.3050683 0.2731233
2 0.0165649 0.0942808 2 0.0867984 0.2765560 -0.5312499 -0.6397174
3 0.0007513 0.0064282 -0.0350227 ~-0.1271430
w=M=4
k 0 1 2 3 4
L 0.4376E-09 0.4203E-07 0.1965E-05 0.5382E-04 0.9029E-03
v a.[v]
0 0.6996910 0.0 0.4783016 0.0 -0.3862293
1 0.4830013 0.5927723 -0.1666510 0.3540569 0.3223025
2 0.1473918 0.3805986 -0.5724443 -0.4929565 -0.0856254
3 0.0141997 0.0613650 -0.1736202 -0.3626279 ~0.5584413
4 0.0000368 0.0003329 -0.0022015 -0.0117722 -0.0484379
w=M=35
k 0 1 2 3 4 5 6
L 0.1056E-11 (.1148E-09 0.6265E-08 0.2307E-06 0.6065E-05 0.1112E-03 0.1411E-02
v a;[v]
0 0.6632850 0.0 0.4560698 0.0 -0.3821638 0.0 0.3246026
1 0.4915713 0.5401300 -0.0704481 0.3866087 0.2527019 -0.2216043 -0.2957322
2 0.1927963 0.4383060 -0.5519198 ~0.3363930 0.1138304 0.3885522 0.1964585
3 0.0347859 0.1266343 -0.2915206 -0.4760267 -0.5457777 -0.3657298 0.0266965
4 0.0019243 0.0105462 -0.0379143 -0.1037856 -0.2286313 -0.4072901 -0.5631039
S 0.0000018 0.0000191 -0.0001319 -0.0007467 -0.0037712 -0.0165910 -0.0588589
Table 2. Ratio (dB) of sampled trig prolate leakage to optimal DPSS leakage®
k 0 1 2 3 4 5 6
w
2 21,19 1.2,1.2
3 2.7,2.0 24,22 20,19 1.3,1.3
4 37,18 2.8,1.7 26,21 24,22 19,19
5 54,26 4.2,2.1 33,19 2.7,2.0 26,22 24,22 19,18

2The first entry is for N = 8w; the second entry is for N = 16w.
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Fig. 1. Frequency response of trig prolate windows for bandwidth w = 4, degree M = 4. The total

energy of each window is 1.
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